
[Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract is
typically a short summary of the contents of the document.]

* Symmetry is everywhere, in nature and in engineering achievements.
\& Nature loves symmetry
* Most objects found in nature have symmetry
* Symmetry is associated with beauty

Symmetry is when a shape looks identical to its original shape after being flipped or turned.

When applied to Chemistry, it can be used, for example
\checkmark To predict whether or not a molecule has a dipole moment
\checkmark To predict if a molecule will show optical activity
\checkmark To derive selection rules for spectroscopic transitions
\checkmark To determine which AOs to be used to construct hybrid orbitals.
\checkmark To predict which molecular vibrations lead to IR spectra.
\checkmark To label and designate MOs
\checkmark Interpret electronic spectra
Symmetry Elements \& Operations
\checkmark A symmetry element is a geometrical entity such as a line, a plane, or a point about which one can perform an operation of rotation, reflection, or inversion.
\checkmark A symmetry operation is movement of a molecule/object about a symmetry element such that resulting configuration is indistinguishable from the original.

Table of Symmetry Elements and Symmetry Operations		
Elements	Symbols	Operations
Identity	\boldsymbol{E}	Identity operation
Proper Axis	$\boldsymbol{C n}$	Rotation operation by $360 \% / n$
Reflection Plane	$\boldsymbol{\sigma}$	Reflection operation (in the plane)
Inversion Center	\boldsymbol{i}	Inversion (of the point x, y, x to $-x,-y,-z$)
Improper Axis	$\boldsymbol{S n}$	Improper rotation ($=$ rotation-reflection operation) 1. Rotation by $360 \% / n$ 2. Reflection in plane perpendicular to rotation axis

E: identity (identity operation)

\& no change in the molecule
\& needed for mathematical completeness
\& every molecule has this operation!!

- Cn: proper axis (rotation operation)

\therefore Rotation through $360 \% / n$ about a rotation axis (clockwise: +)
\& CHCl_{3} : threefold (C_{3}) axis

* Rotation axis \rightarrow parallel to C-H axis
\& $C_{3}{ }^{1}$: rotation angle: $360^{\circ} / 3=120^{\circ}$
$\therefore C_{3}{ }^{2}$: two consecutive rotation $\rightarrow 360^{\circ} \times(2 / 3)=240^{\circ}$
\& $C_{3}{ }^{3} \equiv E\left({ }^{*} E\right.$ is included in all molecules!!)

\mathbf{C}_{6} : along the axis through the center of molecule

[^0]Principal axis (= highest order of rotation axis): Cn axis w/ the largest n value for snowflake \rightarrow C6
principal axis $\rightarrow z$ axis in Cartesian coordinate

σ : reflection plane (reflection operation in the mirror plane)

* Move a point to a opposite and equidistance point through a plane
\Rightarrow e.g.) human body: one mirror plane switching left to right
\Rightarrow round pencil: infinite \# mirror planes at the center of the object (e.g. acetylene, CO_{2})
* if perpendicular to the principal axis, $\rightarrow \sigma_{h}$ (horizontal)
$\%$ if contain the principal axis, $\rightarrow \sigma_{v}$ (vertical), σ_{d} (dihedral: Between two C_{2} axis)

(a)

(b)

i : inversion center (inversion of the point)

* move a point to a opposite and equidistance position through a common central point
$N \equiv N$
(a) Nitrogen

(c) Carbon dioxide
$\mathrm{H}-\mathrm{C} \rightleftharpoons \mathrm{C}-\mathrm{H}$
(b) Acetylene

(d) Benzene

(e) Ethylene

(g) Tetrachloroplatinate(II) ion

(h) Sulphur hexafluoride
S_{n} : improper axis (improper rotation, rotation-reflection operation)
\& rotation by 360% n reflection through a perpendicular plane
e.g.) methane $\rightarrow S_{4}(x 3)$ (through $C \&$ bisecting the angle b / w two H)

Classifications

I. Low symmetry: few or no symmetry operations

Group	Symmetry	Examples	
C_{1}	No symmetry other than the identity operation	CHFClBr	
C_{s}	Only one mirror plane	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CClBr}$	
c_{i}	Only an inversion center; few molecular examples	$\mathrm{HClBrC}-\mathrm{CHClBr}$ (staggered conformation)	

II. High symmetry: contain many symm
 Operations linear, tetrahedral, octahedral, icosahedral

Point Groups

\& A Point Group describes all the symmetry operations that can be performed on a molecule that at least one point remain unmoved and results in a conformation indistinguishable from the original.

Conditions
\Rightarrow Closure rule
\Rightarrow Identity rule
\Rightarrow Associative rule
\Rightarrow Inverse rule

Property of Group

1. Each group must contain an identity operation that commutes (in other words, $E A=A E$) with all other members of the group and leaves them unchanged ($E A=A E=A$). Identity Rule
2. Each operation must have an inverse that, when combined with the operation, yields the identity operation (sometimes a symmetry operation may be its own inverse). Note: By convention, we perform combined symmetry operations from right to left as written.

Inverse Rule

3. The product of any two group operations must also be a member of the group. This includes the product of any operation with itself.

Closure Rule
4. The associative property of combination must hold. In other words, $A(B C)=(A B) C$.

Examples from Point Group

$C_{3 v}$ molecules (and all molecules) contain the identity operation E.

$C_{3}{ }^{2} C_{3}=E\left(C_{3}\right.$ and C_{3}^{2} are inverses of each other)

$\sigma_{\nu} \sigma_{v}=E$ (mirror planes are shown as dashed lines; σ_{v} is its own inverse)

$\sigma_{v} C_{3}$ has the same overall effect as $\sigma_{v}{ }^{\prime \prime}$, therefore we write $\sigma_{v} C_{3}=\sigma_{v}{ }^{\prime \prime}$. It can be shown that the products of any two operations in $C_{3 v}$ are also members of $C_{3 v}$
$C_{3}\left(\sigma_{v} \sigma_{v}{ }^{\prime}\right)=\left(C_{3} \sigma_{v}\right) \sigma_{v}{ }^{\prime}$

Associative Rule

Determination of Point Groups

Matrix Representations

$\mathrm{H}_{2} \mathrm{O}: \mathrm{C}_{2 \mathrm{v}}$ point group $-E, C_{2}, \sigma_{v}(\mathrm{xz}), \sigma_{v}{ }^{\prime}(\mathrm{yz})$

$$
\text { z axis } \quad x z \text { plane as the plane of molecule }
$$

: symmetry operation may be expressed as a transformation matrix
[new coordinates] $=$ [transformation matrix] [old coordinates]

1) $C_{2}:\left\{\begin{array}{l}x^{\prime}=\text { new } x=-x \\ y^{\prime}=\text { new } y=-y \\ z^{\prime}=\text { new } z=z\end{array} \quad\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\right.$
in matrix notation,

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x \\
-y \\
z
\end{array}\right] \text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-x \\
-y \\
z
\end{array}\right]} \\
{\left[\begin{array}{c}
\text { new } \\
\text { coordinates }
\end{array}\right]=\left[\begin{array}{c}
\text { transformation } \\
\text { matrix }
\end{array}\right]\left[\begin{array}{c}
\text { old } \\
\text { coordinates }
\end{array}\right]=\left[\begin{array}{c}
\text { new coordinates } \\
\text { In terms of old }
\end{array}\right]}
\end{gathered}
$$

2) $\sigma_{v}(x z):\left\{\begin{array}{l}x^{\prime}=\text { new } x=x \\ y^{\prime}=\text { new } y=-y \\ z^{\prime}=\text { new } z=z\end{array} \quad\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]\right.$
in matrix notation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
-y \\
z
\end{array}\right] \text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x \\
-y \\
z
\end{array}\right]
$$

$$
\begin{aligned}
& R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
& R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The transformation matrices for the four symmetry operations.

$$
E:\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad C_{2}:\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \sigma_{v}(x z):\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \sigma_{v}^{\prime}(y z):\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Character: only for a square matrix
ζ the sum of the \# on the diagonal from upper left to lower right
e.g.) for $C_{2 v}$ from the above operation

E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}{ }^{\prime}(y z)$
3	-1	1	1

reducible representation (Γ)
\hookrightarrow can be reduced to irreducible representations

Reducible and irreducible representations

- transformation matrix is 'block diagonalized' \rightarrow broken into smaller matrices along the diagonal

1x1 matrix along the principal diagonal

- x, y, z coordinates are independent each other
$\zeta\left\{\begin{array}{l}\text { each } 1,1 \text { position } \rightarrow \text { result of the } x \text { coordinate } \\ \text { each } 2,2 \text { position } \rightarrow \text { result of the } y \text { coordinate }\end{array}\right.$
each 3,3 position \rightarrow result of the z coordinate
$\zeta \begin{cases}\text { four matrix elements for } x \rightarrow & \text { representation of the group } \\ \text { four matrix elements for } y \rightarrow & \text { representation of the group } \\ \text { four matrix elements for } z \rightarrow & \text { representation of the group }\end{cases}$

Character Table:

* A complete set of irreducible representations for a point group
* $C_{2 v}$ character table : the irreducible representations

Point Group (I)	Classes (III)		
IRs (II)	Array of	Translational and	Binomial and Polynomial
	Characters (IV)	Rotational Functions	(V)
		(VI)	

Deduction of Character Table:

The Great orthogonality theorem (GOT)
This Basic theorem is concerned with the elements of the matrices constituting irreducible representations of a group. All the properties and characters of a group representation can be derived this theorem.

Notations Used

Order of the group : h
Dimensions of $i^{\text {th }} \& j^{\text {th }}$ rep: $l_{i} \& l_{j}$
Kronecker delta : $\delta_{i j}$ it is equal to 1 when $i=j$ and zero when $l \neq j$
$\Gamma_{i}\left(R_{m n}\right) \rightarrow$ The element in the $m^{\text {th }}$ row and $n^{\text {th }}$ column of the matrix corresponding to $i^{\text {th }}$ irreducible representation

For $i^{\text {th }} \& j^{\text {th }} I R \Gamma_{i} \& \Gamma_{j}$ of certain group, the terms of the related matrices should satisfy the equation

$$
\Sigma\left[\Gamma_{\mathrm{i}}(\mathrm{R})_{\mathrm{mn}}\right]\left[\Gamma_{\mathrm{j}}(\mathrm{R})_{\mathrm{m}^{\prime} \mathrm{n}^{\prime}}\right]^{*}=\mathrm{h} \delta_{\mathrm{ij}} \delta_{\mathrm{mm}}{ }^{\prime} \delta_{\mathrm{nn}}{ }^{\prime}
$$

It follows from the theorem that the sum over various operations, of the products of the elements of irreducible representations will be equal to zero

1. If the elements are chosen from different IRs(i.e., if $i \neq j$).
2. If elements are chosen from different rows of same rep.(i.e., $m \neq m^{\prime}$)
3. If elements are chosen from different columns of the rep.(i.e., $\left.n \neq n^{\prime}\right)$

Five important rules about irreducible representations

1. The sum of the squares of the dimensions of the IRs of a group $=$ the order of the group.

$$
\Sigma \mathrm{li}^{2}=\mathrm{l}_{1}{ }^{2}+\mathrm{l}_{2}{ }^{2}+\mathrm{l}_{3}{ }^{2}+\ldots \ldots \ldots \ldots .
$$

Since the character of the identity element E is the same as the dimension of the IR, so the sum of the squares of the characters of E in a group $=\mathrm{h}$.

$$
\Sigma\left[\chi_{i}(E)\right]^{2}=h .
$$

2. The sum of the squares of the characters in any IR is equal to h.

$$
\Sigma[\chi \mathrm{i}(\mathrm{R})]^{2}=\mathrm{h} .
$$

3. The characters of two different IRs are orthogonal.

$$
\Sigma \chi_{i}(\mathrm{R}) \chi_{\mathrm{j}}(\mathrm{R})=0
$$

4. In a given representation characters of the elements belonging to the same class are identical.
5. The No. of IRs =No. of classes.

Construction of $\mathrm{C}_{2 \mathrm{~V}}$ character table.
There are 4 elements $\mathrm{E}, \mathrm{C}_{2}(\mathrm{z}), \sigma_{\mathrm{v}}(\mathrm{xz}), \sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{yz})$. : Each element is in a class by itself.
Assumption 1: No. of IRs $=$ No. of classes $($ Rule 5$)=4$.
Let l_{1}, l_{2}, l_{3} and l_{4} are the dimensions of the four IRs, say $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \& \Gamma_{4}$.
We know, $\Sigma l_{\mathrm{l}}{ }^{2}=\mathrm{h}($ Rule-1) $=4$.
i.e., $l_{1}{ }^{2}+l_{2}{ }^{2}+l_{3}{ }^{2}+l_{4}{ }^{2}=4$.

Since l_{1} can't be zero or negative the only solution is $l_{1}=l_{2}=l_{3}=l_{4}=1$. i.e., all the IRs are 1D

Assumption 2: A totally symmetric representations with characters equals to 1
should be included in the group : There would be one one ID IR say Γ_{1}, which would be totally symmetric.

Assumption 3: The sum of the squares of the dimensions

$\mathbf{C}_{2 \mathrm{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathrm{v}}(\mathbf{x z})$	$\sigma_{\mathrm{v}}{ }^{\prime}(\mathbf{y z})$
Γ_{1}	l	l	l	l
Γ_{2}	l	a	b	c
Γ_{3}	l	d	e	f
Γ_{4}	l	g	k	m

$\Sigma\left[\chi_{i}(E)\right]^{2}=h .=4$
Γ_{1} already satisfies this rule i.e., $\quad 1^{2}+1^{2}+1^{2}+1^{2}=4$.
For others we may write
$1^{2}+a^{2}+b^{2}+c^{2}=4$
$\mathrm{l}^{2}+\mathrm{d}^{2}+\mathrm{e}^{2}+\mathrm{f}^{2}=4$
$\mathrm{l}^{2}+\mathrm{g}^{2}+\mathrm{k}^{2}+\mathrm{m}^{2}=4$

$\mathbf{C}_{2 \mathrm{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathrm{v}}(\mathbf{x z})$	$\sigma_{\mathrm{v}}{ }^{\prime}(\mathbf{y z})$
Γ_{1}	l	l	l	l
Γ_{2}	l	a	b	c
Γ_{3}	l	d	e	f
Γ_{4}	l	g	k	m

This is possible only if a , b, chave values
either l or -l

Assumption 4: According to orthogonality rule

$\Sigma g_{i} \chi_{i}(R) \chi_{j}(R)=0$ when $i \neq j$
So among Γ_{2}, Гз, \& Γ_{4} each has to be orthogonal to Γ_{1}
i.e., $1.1+1 . a+1 . b+1 . c=0$
$1.1+1 . d+1 . e+1 . f=0$
$1.1+1 . g+1 . \mathrm{k}+\mathrm{l} . \mathrm{m}=0$
This is possible only if there are two +1 and two -1 in

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathbf{v}}(\mathbf{x z})$	$\sigma_{\mathbf{v}}{ }^{\prime}(\mathbf{y z})$
Γ_{1}	1	1	1	1
Γ_{2}	1	1	-1	-1
Γ_{3}	1	-1	1	-1
Γ_{4}	1	-1	-1	1

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathrm{v}}(\mathbf{x z})$	$\sigma_{\mathrm{v}}{ }^{\prime}(\mathbf{y z})$
\mathbf{x}	1	-1	1	-1
\mathbf{y}	1	-1	-1	1
\mathbf{z}	1	1	1	1

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathbf{v}}(\mathbf{x z})$	$\sigma_{\mathbf{v}}{ }^{\prime}(\mathbf{y z})$	
$\Gamma_{\mathbf{1}}$	1	1	1	1	z
Γ_{2}	1	1	-1	-1	
Γ_{3}	1	-1	1	-1	x
Γ_{4}	1	-1	-1	1	y

The $R_{x}, R_{y} \& R_{z}$ indicate the transformation of rotational motion of the molecule about $x, y \& z$ axis.

Let us find out the character of rotation $\mathbf{R}_{\mathbf{z}}$; the rotation may be represented by a curved. arrow about the z axis.
E - the arrow is unaffected character is l
$\mathrm{C}_{2}(\mathrm{z})$ - it is unaffected- character is 1
$\sigma_{\mathrm{v}}(\mathrm{xz})$-the Left side of arrow move towards right side and vice-versa.
Hence the character is -1 .
$\sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{yz})$ - Same as $\sigma_{\mathrm{v}}(\mathrm{xz})$. So Character is -1 .

$$
1,1,-1,-1 \text { is related to the } \operatorname{IR} \Gamma_{2} .
$$

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathbf{v}}(\mathbf{x z})$	$\sigma_{\mathbf{v}^{\prime}}{ }^{\prime}(\mathbf{y z})$	
Γ_{1}	1	1	1	1	z
Γ_{2}	1	1	-1	-1	Rz
Γ_{3}	1	-1	1	-1	X, Ry
Γ_{4}	1	-1	-1	1	Y, Rx

Similarly rotation about the x and y axis($\mathrm{Rx} \& \mathrm{Ry}$) transforms as $\Gamma_{4} \&$ Γ_{3} respectively.

Binary products $x, y \& z$ including squares and their linear combinations

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathrm{v}}(\mathbf{x z})$	$\sigma_{\mathbf{v}}{ }^{\prime}(\mathbf{y z})$
\mathbf{x}	1	-1	1	-1
\mathbf{y}	1	-1	-1	1
\mathbf{z}	1	1	1	1

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	$\mathbf{C}_{2}(\mathbf{z})$	$\sigma_{\mathbf{v}}(\mathbf{x z})$	$\sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{yz})$		
$\Gamma_{\mathbf{1}}$	l	l	l	l	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
Γ_{2}	l	l	-1	-1	Rz	xy
Γ_{3}	l	-1	l	-1	X, Ry	xz
Γ_{4}	l	-1	-1	l	Y, Rx	yz

We know that $\sum\left[g_{i} \chi_{i}(R)\right]^{2}=h=6$.
$C_{3 v} \quad \Gamma_{1}$ already satisfy this rule $\rightarrow \quad 1^{2}+2 x l^{2}+3 x l^{2}=6$.
For $\Gamma_{2} \rightarrow \quad \quad^{2}+2 a^{2}+3 b^{2}=6$
To satisfy this a \& b should be either 1 or -1 .
According to Orthogonality rule,
i.e., $\sum g_{i} \chi_{i}(R) \chi_{j(R)}=0 \quad$ when $i \neq j$

So for $\Gamma_{1} \& \Gamma_{2} \rightarrow \quad 1 \times 1+2 \times 1 \times a+3 \times 1 \times b=0$
$1+2 a+3 b=0$
This would be possible only if value of $a=1 \& b=-1$

$\mathbf{C}_{3 \mathrm{v}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{3}$	$\mathbf{3} \sigma_{\mathbf{v}}$		
$\Gamma_{\mathbf{1}}$	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
Γ_{2}	1	1	-1	Rz	
Γ_{3}	2	-1	0	x, y, Rx, Ry	$\mathrm{x}^{2}-\mathrm{y}^{2}$, $\mathrm{xy}, \mathrm{xz}, \mathrm{yz}$

$$
\begin{aligned}
& \text { For } \Gamma_{1} \& \Gamma_{3} \rightarrow 1 \times 2+2 \times 1 \times c+3 \times 1 \times d=0 \\
& \qquad \begin{array}{rl}
1+2 c+3 d=0 & 2 c+3 d=-2 \ldots \ldots . .(1) \text { For } \Gamma_{2} \& \Gamma_{3} \rightarrow 1 \times 2+2 \times 1 \times c+3 \times-1 \times d=0 \\
2+2 c-3 d=0 & 2 c-3 d=-2 \ldots \ldots .(2) \\
(1)+(2) & 4 c=-4 c=-1 . \text { Putting } c=-1 \text { in eqn }(1)-2+3 d=-2 \quad 3 d=0 d=0
\end{array}
\end{aligned}
$$

\mathbf{C}_{3}	\mathbf{E}	\mathbf{C}_{3}	$\mathbf{C}_{3}{ }^{2}$		
Γ_{1}	1	1	1	z, Rz	$\mathrm{x}^{2}+\mathrm{y}^{2}$,
Γ_{2}	1	ε	ε^{*}		
Γ_{3}	1	ε^{*}	ε		

Transition Probabilities of Infra Red \& Raman Spectroscopy

- 3N Degrees of freedom
- 3 translation.
- 3 rotation
- 3N-6 vibrational degrees of freedom.
- 3N-5 for linear molecule.
- Only Vibrations with change in dipole moment is infra red active.
- Raman activity is associated with polarization of molecule. Only vibrations which bring about change in polarization will be Raman active.

CALCULATION OF TOTAL CHARACTER.

The three degrees of freedom of each atom in a molecule may be represented by three mutually perpendicular arrows- $x, y, \& z$.

These 3 N vectors may be taken as the basis for evaluating the total character.

If we subtract the characters relating to the translational and rotational degrees of freedom from the above total character, we will get the character relating to vibrational degrees of freedom.

Take H 2 O as example.
Point group : $C_{2 v}$
Elements : $E, C_{2}, \sigma_{v} \& \sigma_{v}{ }^{\prime}$
The basis vectors are $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, x_{3}, y_{3} \& z_{3}$.
The transformation of these vectors give 9-D matrices. During the operation the vectors $x_{1}, y_{1} \ldots$.changes to $x_{1}^{\prime}, y_{1}^{\prime} \ldots$.

During the operation E , all the vectors are retained, i.e., $X_{1}{ }^{\prime}=x_{1}, y_{1}{ }^{\prime}=y_{1}$ etc
$\left[\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x 1 \\ y 1 \\ z 1 \\ x 2 \\ y 2 \\ z 2 \\ x 3 \\ y 3 \\ z 3\end{array}\right]=\left[\begin{array}{l}x 1^{\prime} \\ y 1^{\prime} \\ z 1^{\prime} \\ x 2^{\prime} \\ y 2^{\prime} \\ z 2^{\prime} \\ x 3^{\prime} \\ y 3^{\prime} \\ z 3^{\prime}\end{array}\right]$

The operation $\sigma_{\underline{v}}^{\prime}$ bring about the following changes
$\mathrm{x}_{1} \rightarrow-\mathrm{x}_{1}{ }^{\prime} ; \mathrm{y}_{1} \rightarrow \mathrm{y}_{1}{ }^{\prime} ; \mathrm{z}_{1} \rightarrow \mathrm{z}_{1}{ }^{\prime} ; \mathrm{x}_{2} \rightarrow-\mathrm{x}_{2}{ }^{\prime} ; \mathrm{y}_{2} \rightarrow \mathrm{y}_{2}{ }^{\prime} ;$
$z_{2} \rightarrow z_{2}{ }^{\prime} ; x_{3} \rightarrow-x_{3}{ }^{\prime} ; y_{3} \rightarrow y_{3}{ }^{\prime}$ and $z_{3} \rightarrow z_{3}{ }^{\prime}$
$\left[\begin{array}{ccccccccc}-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x 1 \\ y 1 \\ z 1 \\ x 2 \\ y 2 \\ z 2 \\ x 3 \\ y 3 \\ z 3\end{array}\right]=\left[\begin{array}{l}x 1^{\prime} \\ y 1^{\prime} \\ z 1^{\prime} \\ x 2^{\prime} \\ y 2^{\prime} \\ z 2^{\prime} \\ x 3^{\prime} \\ y 3^{\prime} \\ z 3^{\prime}\end{array}\right]$

The operation σ_{v} bring about the following changes

- $\mathrm{x}_{1} \rightarrow \mathrm{x}_{3}{ }^{\prime} ; \mathrm{y}_{1} \rightarrow-\mathrm{y}_{3}{ }^{\prime} ; \mathrm{z}_{1} \rightarrow \mathrm{z}_{3}{ }^{\prime} ; \mathrm{x}_{2} \rightarrow \mathrm{x}_{2}{ }^{\prime} ; \mathrm{y}_{2} \rightarrow-\mathrm{y}_{2}{ }^{\prime}$;
$z_{2} \rightarrow z_{2}{ }^{\prime} ; x_{3} \rightarrow x_{1}{ }^{\prime} ; y_{3} \rightarrow-y_{1}{ }^{\prime}$ and $z_{3} \rightarrow z_{1}{ }^{\prime}$
$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}x 1 \\ y 1 \\ z 1 \\ x 2 \\ y 2 \\ z 2 \\ x 3 \\ y 3 \\ z 3\end{array}\right]=\left[\begin{array}{l}x 1^{\prime} \\ y 1^{\prime} \\ z 1^{\prime} \\ x 2^{\prime} \\ y 2^{\prime} \\ z 2^{\prime} \\ x 3^{\prime} \\ y 3^{\prime} \\ z 3^{\prime}\end{array}\right]$

Reducible Representation-

- A representation of a symmetry operation of a group, which CAN be expressed in terms of a representation of lower dimension.
- CAN be broken down into a simpler form.
- Characters CAN be further diagonalized
- Are composed of several irreducible representations.

Irreducible Representation-

- A representation of a symmetry operation of a group, which CANNOT be expressed in terms of a representation of lower dimension.
- CANNOT be broken down into a simpler form.
- Characters CANNOT be further diagonalized.

Thus the total representation taking the nine vectors on the three atoms on the water as the basis.

Another easy method to determine total character.
Only that atom which retain position contribute to total character. In such atoms each vector which retain direction contribute 1 and each vector which reverse direction contribute -1.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{v}	$\sigma_{\mathrm{v}}{ }^{\prime}$
NUSA	3	1	1	3
$\chi_{\text {cart }}$	3	-1	1	1
$\boldsymbol{\Gamma}_{\text {cart (3N) }}$	$\mathbf{9}$	$\mathbf{- 1}$	$\mathbf{1}$	$\mathbf{3}$

REDUCTION FORMULA

$$
n(i)=\frac{1}{h} \sum_{R} \chi_{r}(R) \chi_{i}(R)
$$

$\mathbf{n}_{(\mathrm{i})}=$ Number of times the ith irreducible representation occurs in the representation r that we are aiming to reduce.
h = Order of group
$\Sigma=$ This denotes a summation over all the operations R in the group. If there is more than one operation in a given class we must remember to include each operation in the summation.
$\chi_{r(R)}=$ Character of the reducible representation r under the symmetry operation R.
$\chi_{i(R)}=$ Character of the irreducible representation i under the symmetry operation R.

Irreducible
Representations

[^0]: C_{2}, C_{3} and C_{6} rotations
 of a snowflake design

